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Abstract

Quantitative structure–mobility relationship (QSMR) models were developed between the structures of flavonoids and their eletrophoretic
mobilities in micellar electrokinetic capillary chromatography. Molecular descriptors calculated from structure alone are used to represent
molecular structures, moreover,Nt was defined by ourselves. Multiple linear regression and radial basis function neural networks (RBFNNs)
are utilized to construct the linear and nonlinear prediction model, respectively. The optimal QSMR model developed was based on a 3-10-1
RBFNNs architecture. The root mean square errors in mobilities predictions for the data set was 0.1083 mobility unit (10−4 cm2 V−1 s−1). The
prediction results were in good agreement with the experimental values.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Structure–mobility relationships; Neural networks, radial basis function; Regression analysis; Flavonoids

1. Introduction

CE has become a powerful separation technique and has
been applied to the analysis of a wide range of molecules in-
cluding peptides, proteins, and small organic and inorganic
molecules. During method development in CE, optimiz-
ing the separation condition is sometimes time consuming
and tedious. Quantitative structure–mobility relationships
(QSMRs) are a key tool to predict separations avoiding long
and tedious separation optimization. Also, QSMRs can be
used to explain separation mechanisms. There have been
some reports on QSMR studies in CE. Fu and co-workers
[1,2] developed empirical expressions for the prediction
of electrophoretic mobility of monoamines and carboxylic
acids. They correlated the mobility of analytes with the
molecular mass, molar volume and dissociation constant
using nonlinear equations. Also, Timerbaev et al. predicted
the electrophoretic mobilities by charge and size character-
istics of metal complexes[3].

Recently, neural networks have gained great popularity in
quantitative structure-property relationships (QSPRs)[4,5]
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and quantitative structure-retention relationships (QSRRs)
[6,7] studies due to their flexibility in modeling nonlinear
problems. There also have been several reports on the use of
neural networks in the modeling of electrophoretic mobil-
ity. Jalali-Heravi and Garkani-Nejad used neural networks
to predict the eletrophoretic mobilities of 13 sulfonamides
and 31 isomeric alkyl- and alkenylpyridines in capillary
zone electrophoresis (CZE)[8,9]. Most of these works used
neural networks trained by the back-propagation learning
algorithm, which has some disadvantages, such as, local
minima, slow convergence, time-consuming nonlinear iter-
ative optimization, difficulty in explicit optimum network
configuration, etc.[10]. In contrast, the radial basis function
neural networks (RBFNNs) allow modeling of nonlinear
data using a linear approach, which guarantees the opti-
mal solution. Its parameters can be adjusted by fast linear
methods. It has advantages of small training times and the
optimization of its topology and learning parameters are
easy to implement[11,12]. Many problems in chemistry
and chemical engineering have been successfully solved
by use of RBFNNs, such as QSRR[13,14], multivariate
calibration[15,16], classification[17,18], etc.

Flavonoids constitute one of the largest groups of nat-
urally occurring phenols and are widespread components
in all parts of plants. Flavonoids possess a wide variety of
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biological activities. There have been continuing interests in
studying the natural flavonoids as potential new drugs[19].
So theoretical study of these compounds seems to be useful.
But, to our knowledge, there has been only one paper on the
QSMR study of flavonoids in CZE[20]. They established
the relationship between the mobilities and topological in-
dices by the multiple linear regression (MLR) technique.
Therefore, developing theoretical models to predict the
electrophoretic behaviour of flavonoids is necessary.

In this work, we successfully developed QSMR models
based on RBFNNs for predicting the electrophoretic mo-
bility of 13 flavonoids in micellar electrokinetic capillary
chromatography (MEKC). A linear rgression model was
also developed and its results were compared with those
obtained by RBFNNs.

2. Experimental

2.1. CE procedure and data set

The structures of flavonoids studied in this work were
given in Fig. 1. The separation of 13 flavonoids was per-
formed on a Waters Quanta 4000 capillary electrophoresis
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Fig. 1. Structures of the investigated flavonoids.

system (Milford, MA, USA) controlled by a personal com-
puter. The dimensions of the fused-silica capillary (Yong-
nian Photoconductive Fibre Factory, Hebei Province, China)
were 50.0 cm (42.4 cm to the detector)× 75�m i.d. Di-
rect UV detection was employed at a wavelength of 214 nm.
The separation voltage was 16 kV. The temperature was con-
trolled at 23.5 ± 0.5◦C. The electrophoretic buffer was an
electrolyte containing 10 mM sodium dihydrogen phosphate,
5 mM sodium borate, 90 mM sodium dodecylsulfate (SDS)
and 10% (v/v) acetonitrile, at pH 7.3. The electrophoretic
mobilities of the flavonoids were given inTable 1.

2.2. Molecular descriptor generation

All molecules were drawn into Hyperchem (Hypercube,
1994) and optimized using the semi-empirical AM1 method
and thereafter, molecular descriptors were obtained. All cal-
culations were carried out at restricted Hartree Fock level
with no configuration interaction. The molecular structures
were optimized using the Polak–Ribiere algorithm until the
root mean square gradient was 0.01 kcal Å mol−1 (1 cal =
4.184 J). The molecular descriptors can be classified into
four groups of geometrical, electronic, physico-chemical
and quantum chemical descriptors. Geometrical descriptors
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Table 1
The experimental and predicted electrophoretic mobility by MLR and
RBFNNs

No. Flavonoids Electrophoretic mobilitya

µEXP µMLR µRBFNN

1 (+)-Catechin −1.270 −1.272 −1.329
2 Naringin −2.026 −2.329 −1.975
3 Hesperidin −2.375 −2.337 −2.411
4 Kaempferol-3-O-rhamnoside −3.042 −3.261 −3.087
5 Wogonin −3.758 −4.139 −3.755
6 Kaempferol −3.870 −3.187 −3.863
7 Tiliroside −4.037 −4.193 −4.278
8 Ikarisoside A −4.570 −4.116 −4.335
9 2′′-O-rhamnosylicariside I −4.608 −4.502 −4.471

10 Icariin II −4.640 −4.604 −4.725
11 (−)-Epicatechin −1.396 −1.265 −1.338
12 Quercetin −2.932 −3.311 −2.945
13 Icariin −4.451 −4.457 −4.468

a µ is the electrophoretic mobility in 10−4 cm2 V−1 s−1.

describe the size of the molecules, and consist of Grid sur-
face area (SA) and volume (V). Electronic descriptors re-
flect the characteristics of the charge distribution of the
molecules, and include partial charge of the most nega-
tive atom (PCN), partial charge of the most positive atom
(PCP) and dipole moment (DM, debye). Physico-chemical
descriptors include logP, heat of formation (�H, kcal/mol)
and binding energies (BE, kcal/mol), and finally quantum
chemical descriptor molecular orbital energy levels (EHOMO,
ELUMO) was calculated. Another descriptor,Nt, being de-
fined by ourselves will be discussed inSection 3.1. The val-
ues of the descriptors were shown inTable 2.

2.3. Feature selection

Since it is not possible to know a priori which descriptors
are most relevant to the problem at hand, a comprehensive
set of descriptors is usually employed, chosen based on
experience, software availability, and computational cost.
However, it is well known, both in the chemical and statisti-

Table 2
The values of all the descriptors for the flavonoidsa

No. logP Nt V SA �H BE DM PCN PCP

1 −3.12 8 773.89 472.97 −211.933 −3862.065 1.924 −0.317 0.238
2 −3.46 5 1371.60 732.13 −570.824 −7685.944 2.899 −0.341 0.296
3 −4.45 4 1461.65 802.2 −608.327 −8058.100 4.790 −0.342 0.298
4 −0.11 4 1067.87 613.71 −357.250 −5583.570 2.356 −0.376 0.325
5 1.5 1 775.65 464.88 −110.538 −3767.797 2.683 −0.343 0.318
6 0.56 4 746.76 458.89 −165.459 −3607.183 2.634 −0.353 0.306
7 1.27 3 1447.10 798.43 −426.650 −7682.269 1.132 −0.346 0.345
8 1.44 3 1295.11 723.72 −360.271 −6857.857 2.829 −0.378 0.325
9 1.04 2 1633.33 863.17 −535.795 −9093.071 2.768 −0.349 0.328

10 1.47 1 1345.31 751.15 −349.282 −7121.962 3.796 −0.338 0.322
11 −3.12 8 765.07 466.33 −210.392 −3860.524 3.206 −0.321 0.237
12 2.45 6 766.96 470.04 −205.589 −3706.872 3.815 −0.353 0.305
13 0 1 1677.10 915.48 −579.683 −9196.518 2.946 −0.369 0.321

a Definitions of the descriptors are given in the text.

cal fields, that the accuracy of classification and regression
techniques is not monotonic with respect to the number
of features employed by the model. So, selection of de-
scriptors is very important in order to identify a subset of
relevant features and using only them to construct the actual
model. Once descriptors were generated, after correlation
analysis of the descriptors, descriptor-screening methods
were used to select the most relevant descriptor to establish
the models for predicting the molecular property. Here, the
forward stepwise regression method was used to choose
the subset of the molecular descriptors. Forward stepwise
regression starts with no model terms and at each step it
adds the most statistically significant term (the one with
the highestF-statistic or lowestP-value) until there are
none left.

2.4. Regression analysis

Once descriptors were generated, the SPSS/PC software
package (SPSS, 1999) was used to develop the MLR model,
which takes the following form:

µ = b0 + b1D1 + b2D2 + · · · + bnDn

In this equation,µ is the electrophoretic mobility,D1 to
Dn represent the specific descriptors, whileb1 tobn represent
the coefficient of those descriptors, andb0 is the intercept of
this equation. The linear correlation coefficient of each two
descriptors appearing in the model is<0.9.

2.5. Radial basis function neural networks theory

The RBFNNs consist of three layers: input layer, hidden
layer and output layer. The input layer does not process
the information; it only distributes the input vectors to the
hidden layer. The hidden layer of RBFNNs consists of a
number of RBF units (nh) and bias (bk). Each hidden layer
unit represents a single radial basis function, with associ-
ated center position and width. Each neuron on the hidden
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layer employs a radial basis function as nonlinear transfer
function to operate on the input data. The most often used
RBF is a Gaussian function that is characterized by a center
(cj) and width (rj). The RBF functions by measuring the
Euclidean distance between input vector (x) and the radial
basis function center (cj) and performs the nonlinear trans-
formation with RBF in the hidden layer as given below:

hj(x) = exp

(
−||x − cj||2

r2
j

)
(1)

wherehj is the notation for the output of thejth RBF unit.
For thejth RBF,cj andrj are the center and width, respec-
tively. The operation of the output layer is linear, which is
given inEq. (2).

yk(x) =
nh∑

j=1

wkjhj(x) + bk (2)

whereyk is the kth output unit for the input vectorx, wkj
the weight connection between thekth output unit and the
jth hidden layer unit andbk is the bias.

FromEqs. (1) and (2), one can see that designing RBFNNs
involves selecting centers, number of hidden layer units,
width and weights. There are various ways for selecting the
centers, such as random subset selection, K-means cluster-
ing, orthogonal least squares learning algorithm, etc. The
widths of the radial basis function can either be chosen the
same for all the units or can be chosen different for each
unit. In this paper, considerations were limited to the Gaus-
sian functions with a constant width, which was the same
for all units. A forward subset selection routine[21,22]was
used to select the centers from training set samples. After the
selection of centers and width of radial basis functions, the
adjustment of the connection weight between hidden layer
and out-put layer is performed using a least squares method
as following:

w = yZ′(ZZ′)−1 (3)

where y is the matrix of training example targets,Z the
matrix of hidden layer unit outputs,Z′ is the transpose of
matrix Z andw the weight matrix connection hidden layer
and output layer.

The overall performance of RBFNNs is evaluated in terms
of root mean squared error (RMS) according to the equation
below:

RMS =
√∑ns

i=1(yk − ŷk)2

ns
(4)

whereyk is the desired output and̂yk the actual output of
the network,ns the number of compounds in analyzed set.

2.6. Reliability of the model

The reliabilities of the model were tested with their
leave-one-out (LOO) cross-validated correlation coeffi-
cient (Q2) scores. Cross-validatedQ2 was defined asQ2 =

(SSY− PRESS)/SSY, where SSY is the sum of the squared
deviations of the dependent variable values from their mean,
and PRESS is the predicted sum of squares obtained from
the leave-one-out cross-validation method. In this method,
one compound was removed randomly from the data set each
time and the model was generated with the remaining com-
pounds. Then, the electrophoretic mobility of the removed
compound was predicted using the generated model. This
procedure was continued until each compound was predicted
once.

2.7. Radial basis function neural networks implementation
and computation environment

All calculation programs implementing RBFNNs were
written in M-file based on basis MATLAB script for radial
basis function neural networks[21,22]. They ran on a Pen-
tium IV PC with 256 M RAM.

3. Results and discussion

3.1. Definition of Nt

In MEKC, different partitioning of the analytes between
the aqueous phase and the micelles phase is mainly influ-
enced by the hydrophobicity of analytes. According to the
structural characteristics of flavonoids, the structural factors
affecting the hydrophobicity of the compounds include the
degree of unsaturation of C-ring, the numbers of hydroxy,
sugar unit, vicinal dihydroxy groups, alkyl and alkoxy sub-
stitutions in flavone skeleton. So, we defined a parameter,Nt,
which combines the influence of types of flavone skeleton
and substitutions in flavone skeleton on the hydrophobicity
of the analytes.Nt = Nh + Ns + Nu + Nvh − Na, whereNh
is the number of hydroxy groups,Ns the number of sugar
units, Nu the degree of unsaturation of C-ring of the ana-
lytes subtracted from three that is the degree of unsaturation
of C-ring of flavone skeleton,Nvh the number of pairs of
vicinal dihydroxy groups, andNa the number of alkyl and
alkoxy groups. The hydrophobicity of flavonoids decreases
with the increase ofNh, Ns, Nu andNvh, but it increases with
the increase ofNa. Therefore, from the definition ofNt, we
can see that the hydrophilicity of flavonoids increases with
the increase ofNt.

The followings were some examples for calculatingNt.
For compounds1 and11, Nt = 5 + 0 + (3 − 1) + 1 − 0 =
8. For compound7, because there is a hydrophobic group
(O-6-p-coumaroyl) on the sugar link, the number of sugar
units is considered as 0. So,Nt of 7 is 3.

3.2. Multiple linear regression analysis

In this article, correlation analysis of descriptors was per-
formed first. In the process of correlation analysis, either de-
scriptor which correlation coefficient is more than 0.9 was
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Table 3
Correlation matrix of the three parameters

LogP Nt V

Log P 1.000 −0.563 −0.006
Nt 1.000 −0.579
V 1.000

discarded. The new data set of descriptor after correlation
analysis was dealt with stepwise regression analysis. Two de-
scriptors, logP andNt, were selected with the forward step-
wise regression analysis. Considering the size of molecule
also influences the partition of the analyte between the mi-
celle and aqueous phases and consequently influences the
electrophoretic mobility of the analyte, we added another
descriptor, volume, into the model. The correlation matrix
of the three parameters was displayed inTable 3. After re-
gression analysis, the model contained three descriptors was
shown as following:

µ = (−3.280± 0.694) + (−0.288± 0.062) logP

+ (0.219± 0.073)Nt + (−0.001± 0.000)V

n = 13, R = 0.967, SE= 0.3585, F = 43.551 (5)

where SE is the standard error of the estimate.
Nt had been mentioned inSection 3.1. logP is defined

asn-octanol–water partition coefficient, which describes hy-
drophobility of the molecule. Volume is a bulky property,
which describes the size of the molecule. As seen in the
model, the coefficient of logP andV were negative and that
of Nt was positive. This can be explained as follows. The
higher is logP, the more hydrophobic is the analyte. The
analyte with high logP tends to partition into the micelle
phase. So, the higher is logP of the analyte, the greater is the
electrophoretic mobility toward the anode. Consequently, the
electrophoretic mobility toward the cathode will be smaller.
Because the flavonoids had negative charge under the buffer
condition, the greater is the volume of the analyte, the less
is the negative charge density. This will be in favor of the
analyte partitioning into negatively charged micelle phase.
So the greater is the volume of the analyte, the greater is the
electrophoretic mobility toward the anode, which was simi-
lar to the effect of logP. The hydrophobicity of the analytes
decreases with the increase ofNt. The analytes with higher
Nt tend to partition into the aqueous phase. Therefore, the
higher isNt of the analyte, the greater is the electrophoretic
mobility toward the cathode.

The results predicted by MLR were shown inTable 1.
Compared with the experiment values, the predicted elec-
trophoretic mobilities of some flavonoids were inverted, for
example those of1 and11, 4 and12. The plot of the pre-
dicted electrophoretic mobililities against the observed val-
ues was shown inFig. 2.

The MLR model was not sufficiently accurate, which
indicated the descriptors were not completely linear cor-
relation with the electrophoretic mobilities of flavonoids.
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Fig. 2. Plot of the predicted electrophoretic mobility by MLR against the
experimental values.

Therefore, radial basis function network was used to de-
velop a nonlinear model based on the same descriptors.

3.3. Radial basis function neural network analysis

The RBFNNs have three inputs (a set of three molecular
descriptors), one output layer unit (the electrophoretic mo-
bility) and one hidden layer ofnh untis. Such RBFNNs can
be designed as 3-nh-1 net to indicate the number of unit in
input, hidden layer and outpur layer, respectively. RBFNNs
are completely specified by choosing the following param-
eters: the numbernh of radial basis functions, the centercj

and widthrj of each radial basis function, and the connection
weightwkj betweenjth hidden layer unit andkth output unit.

The number of radial basis functions (the hidden layer
units) nh greatly influences the performance of a RBFNN.
If the number is too low, the network may not produce a
proper estimation of the data. On the other hand, if too many
hidden layer units are used, the network tends to overfit the
training data. In this paper, the radial basis functions were
added one by one and terminated if no performance of the
networks was improved by adding a new basis function. The
centers of RBFNNs are determined with the forward subset
selection method proposed by Orr[22]. The advantages of
this method over other center selection methods are that it
can determine the number of hidden layer units simultane-
ously and there is no need to fix the number of hidden layer
units in advance. This method also has a tractable model
order selection and goes through a process of selecting a
subset of radial basis functions from a larger set of candi-
dates (training set samples). The model starts empty; the ra-
dial basis function to add is the one that reduces the sum of
squared errors the most. After the selection of the centers
and number of hidden layer units, the connection weights
can be easily calculated by linear least square method.
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Fig. 3. Plot of RMS on LOO cross-validation against the width of
RBFNNs.

Because the number of the molecules included in the
data set was small, the leave-one-out cross-validation pro-
cedure was carried out to evaluate the prediction ability of
the selected models. Generally speaking, the leave-one-out
cross-validation coefficient should be >0.75. The optimal
width was selected choicely from 1.27 to 1.40. The RMS on
LOO cross-validation was plotted against the width (Fig. 3)
and the minimum was chosen as the optimal conditions. As
seen inFig. 3, the optimal width wasr = 1.37, and in this
casenh = 10. The model gave a LOO cross-validationQ2

of 0.992, which indicated the model was statistically signif-
icant according to statistical criteria and predictive ability.

Through the above process, the best number of hidden
layer units and the optimum width were 10 and 1.37, re-
spectively. The selected centers were listed inTable 4.
The predictive results obtained by RBFNNs were shown in
Table 1. As seen in the table, the predicted electrophoretic
mobilities agreed well with the experimental values. The
predicted electrophoretic mobilities values by RBFNNs
against the experimental values were plotted inFig. 4. The
network gave the correlation coefficient (R) and RMS of
0.996 and 0.1083 mobility unit (10−4 cm2 V−1 s−1) for the
whole data set, indicating the good ability of RBFNNs to
predict the electrophoretic mobility of flavonoids in micellar
electrokintic capillary chromatography.

Table 4
A full list of centers selected for RBFNNs

No. Flavonoids

2 Naringin
13 Icariin
7 Tiliroside

10 Icariin II
11 (−)-Epicatechin
8 Ikarisoside A
1 (+)-Catechin

12 Quercetin
4 Kaempferol-3-O-rhamnoside
3 Hesperidin
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Fig. 4. Plot of the predicted electrophoretic mobility by RBFNNs against
the experimental values.

4. Conclusions

In this work, we defined a parameterNt according to the
structural characteristics of flavonoids.Nt and other two
molecular descriptors were used to develop the models for
predicting the electrophoretic mobilitis of flavonoids by
MLR and RBFNNs. The nonlinear model using RBFNNs
based on the same set of descriptors showed better predic-
tive ability. This indicates that some nonlinear relationship
exists between the descriptors and electrophoretic mobil-
ity. It can also be concluded that RBFNNs is an important
tool to develop QSMR models of flavonoids in micellar
electrokinetic capillary chromatography.
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